Basic Formulas of Derivatives
For any two differentiable functions f(x) and g(x):
- f(x)=c (c is a constant), then f'(x)=0
- g(x)=cf(x) (c is a constant), then g'(x)=c·f'(x)
- f(x)=xn (n is a rational number), then f'(x)=nxn-1
- y=f(x)±g(x), then y'=f'(x)±g'(x)
- y=f(x)·g(x) then, y'=f'(x)·g(x)+f(x)·g'(x)
- y=f(x)/g(x) (g(x)≠0) then, y'=(f'(x)g(x)-f(x)g'(x))/g2(x)
Derivatives of Various Functions
- y=ex then, y'=ex
- y=ax then, y'=ax·ln(a)
- y=ln(x) then, y'=1/x
- y=logax then, y'=1/(x·ln(a))
- y=sin(x) then, y'=cos(x)
- y=cos(x) then, y'=-sin(x)
- y=tan(x) then, y'=1/cos2(x)
- y=arctan(x) then, y'=1/(x2+1)
- y=arcsin(x) then, y'=(1-x2)-0.5
Derivative of Composite Functions
- y=f(u), u=g(x) then, dy/dx=dy/du · du/dx
- y=f(ax+b) then, y'=af'(ax+b)
- y=fn(x) then, y'=n·fn-1(x)·f'(x)
No comments:
Post a Comment